Spatial and temporal effects of free-air CO2 enrichment (POPFACE) on leaf growth, cell expansion, and cell production in a closed canopy of poplar.
نویسندگان
چکیده
Leaf expansion in the fast-growing tree, Populus x euramericana was stimulated by elevated [CO(2)] in a closed-canopy forest plantation, exposed using a free air CO(2) enrichment technique enabling long-term experimentation in field conditions. The effects of elevated [CO(2)] over time were characterized and related to the leaf plastochron index (LPI), and showed that leaf expansion was stimulated at very early (LPI, 0-3) and late (LPI, 6-8) stages in development. Early and late effects of elevated [CO(2)] were largely the result of increased cell expansion and increased cell production, respectively. Spatial effects of elevated [CO(2)] were also marked and increased final leaf size resulted from an effect on leaf area, but not leaf length, demonstrating changed leaf shape in response to [CO(2)]. Leaves exhibited a basipetal gradient of leaf development, investigated by defining seven interveinal areas, with growth ceasing first at the leaf tip. Interestingly, and in contrast to other reports, no spatial differences in epidermal cell size were apparent across the lamina, whereas a clear basipetal gradient in cell production rate was found. These data suggest that the rate and timing of cell production was more important in determining leaf shape, given the constant cell size across the leaf lamina. The effect of elevated [CO(2)] imposed on this developmental gradient suggested that leaf cell production continued longer in elevated [CO(2)] and that basal increases in cell production rate were also more important than altered cell expansion for increased final leaf size and altered leaf shape in elevated [CO(2)].
منابع مشابه
Elevated CO2 concentration, fertilization and their interaction: growth stimulation in a short-rotation poplar coppice (EUROFACE).
We investigated the individual and combined effects of elevated CO2 concentration and fertilization on aboveground growth of three poplar species (Populus alba L. Clone 2AS-11, P. nigra L. Clone Jean Pourtet and P. x euramericana Clone I-214) growing in a short-rotation coppice culture for two growing seasons after coppicing. Free-air carbon dioxide enrichment (FACE) stimulated the number of sh...
متن کاملOn the variability of the ecosystem response to elevated 1 atmospheric CO 2 across spatial and temporal scales at the 2 Duke Forest FACE experiment
12 While the significance of elevated atmospheric CO2 concentration on instantaneous leaf13 level processes such as photosynthesis and transpiration is rarely disputed, its integrated 14 effect at ecosystem level and at long-time scales remains a subject of debate. In part, the 15 uncertainty stems from the inherent leaf-to-leaf variability in gas exchange rates. By 16 combining 10 years of lea...
متن کاملPhotosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert
The magnitude of changes in carboxylation capacity in dominant plant species under long-term elevated CO2 exposure (elevated pCa) directly impacts ecosystem CO2 assimilation from the atmosphere. We analyzed field CO2 response curves of 16 C3 species of different plant growth forms in favorable growth conditions in four free-air CO2 enrichment (FACE) experiments in a pine and deciduous forest, a...
متن کاملLeaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.
Increasing concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have the potential to affect tree physiology and structure, and hence forest feedbacks on climate. Here, we investigated how elevated concentrations of CO2 (+45%) and O3 (+35%), alone and in combination, affected conductance for mass transfer at the leaf and canopy levels in pure aspen (Populus tremuloides...
متن کاملCanopy-scale kinetic fractionation of atmospheric carbon dioxide and water vapor isotopes
[1] The carbon and oxygen isotopes of CO2 and the oxygen isotopes of H2O are powerful tracers for constraining the dynamics of carbon uptake and water flux on land. The role of land biota in the atmospheric budgets of these isotopes has been extensively explored through the lens of leaf-scale observations. At the ecosystem scale, kinetic fractionation is associated with molecular and turbulent ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 131 1 شماره
صفحات -
تاریخ انتشار 2003